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Mean values of r~ and r~2 for the ground and several excited states of the helium isoelectronic 
sequence are used to demonstrate that a simple scaling which superimposes the distribution function 
f(r12 ) as a function of the atomic number leads to a similar result for the electron density distribution 
D (rx). On the basis of a screening interpretation of the scaling parameter 6, it is concluded that screening 
is greater in the singlet than the triplet state of a particular configuration, that screening is greater 
in the P states than the corresponding S states, and that the screening approaches the limiting value 
of 1 for the highly excited states. The perturbation expansions of Scherr and Knight are used to deter- 
mine the limiting value of 6 when Z ~ ov and the relationship between the scaling parameter and the 
scale factor, chosen so that a trial wave function satisfies the virial theorem, is discussed. A brief 
discussion of the scaling of the Coulomb hole is presented. 
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1. Introduction 

The introduction of the distribution function of the interelectronic distance 
f(r12 ) and the definition of the Coulomb hole as the difference between the exact 
f(r12 ) and the Hartree-Fock f(r12 ) by Coulson and Neilson [1] has stimulated 
many recent investigations of electron correlation in atoms. Detailed discussions 
have been presented of the Coulomb hole in the ground states of helium [1-4], 
beryllium [5] and neon [6] and some of the excited states of helium [7]. Closely 
related studies include an analysis of correlation effects in terms of the expectation 
values of the electron-nuclear attraction and the interelectronic repulsion in the 
ground states of several atoms [83 and a discussion on the effect of the Pauli 
principle in atoms in terms of the difference between the ls2p singlet and triplet 
state f(r12) distributions in the He isoelectronic sequence [-9]. Several authors 
have calculated mean values of 1/r12 which is related, of course, to f(r12 ) by 
Eq. (1) 

<r~2) = ~ r~2f(rl2) dr12 (1) 
o 

and compared the results for states of different multiplicity arising from the same 
configuration [-7, 10-12]. Also we should note that a distribution function for 
the interelectronic angle in atomic systems has been proposed by Banyard and 
Ellis [13] and used to study angular correlation in two- and four-electron atoms. 
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In a recent paper [-7] on the Coulomb hole in some excited states of helium, 
it was observed that the distribution function f(rx2 ) for a particular state can be 
approximately represented by a single curve for all atomic numbers Z. Thus, 
by plotting f(r12)/(Z-6) versus (Z-6)r~2, the distribution functions can be 
nearly superimposed with an appropriate choice of the scaling parameter 6. 
The scaling parameter is significantly larger for the 21S state than for the 23S 
state of the He isoelectronic sequence [-7] and as a consequence it has been sug- 
gested that ~ be interpreted physically as a screening constant, although it should 
be stressed that atomic screening constants refer to the radial distance r~ and 
not to r~2 and, therefore, ~ should not be confused with the conventional concept 
of atomic screening constants. The purpose of this paper is to determine whether 
or not the electron density distribution function D (rl) can also be scaled by the 
same procedure and to determine whether or not there is a simple relationship 
between the 6 which scales D(rx) for a particular state and the 6 which scales 
f(r~2). 

2. Sealing Procedure 

There are at least two procedures by which we may study the scaling of the 
distribution functions of an operator such as rl or rl 2. We could compute the 
distribution functions f(r12) and D(rO for a particular state for several values of 
the atomic number and then determine the value of 6 which maximizes the overlap 
of the scaled curves. If the overlap between the distribution functions for any two 
values of Z is large for a particular choice of 6, we may conclude that the distribu- 
tion functions are well represented by a single curve. Or equivalently separate 
values of 6 could be chosen to maximize the overlap of the distribution functions 
associated with any two values of Z. If the 6's obtained in this manner are nearly 
independent of Z, we arrive at the same conclusion. 

Both variations of the above procedure are quite tedious. An alternative 
procedure which eliminates the necessity of working directly with the cumber- 
some distribution functions is based on the expectation values associated with the 
distribution functions. Another advantage of the second procedure is that Peke- 
ris et al. [12] have reported accurate expectation values of r~ and r~2, n = 1, 2, 
for many excited states of the He isoelectronic sequence. Thus a convenient 
set of data is available for investigating the scaling of D(rO and f(rx2) in many 
states of two-electron atoms. 

If a distribution function, such as f (r 12), for a particular state and isoelectronic 
sequence is scaled as a function of the atomic number by plotting f(r12)/(Z-5) 
versus (Z-6)r l z ,  the scaled mean values <r~"z> are related to the unsealed mean 
values <r'~z ) by 

< r ~ >  = ( Z -  a)" <r~2> �9 (2) 

Furthermore, if the distribution functions for several values of the atomic number 
can be well approximated by a single curve, then the 5 which makes Eq. (2) very 
nearly constant should be nearly independent of n. This statement is subject 
to the condition that, for a particular n, 6 is relatively insensitive to a change 
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in the atomic number. Similarly we note that if the distribution functions are 
not well represented by a single curve, the scaling does not effectively superimpose 
the distribution functions and the values of 6 which make Eq. (2) nearly constant 
are very different for different n. 

In the subsequent sections of this paper, 6 will be chosen to minimize the sum 
S o defined in Eq. (3). 

s~, . . . .  = r 1 2 ) i -  ( r 1 2 ) . v  �9 (3) 
i=1 

In this expression, the summation extends over N members of the isoelectronic 
sequence and (r~"2)av is the average of the N scaled mean values defined by Eq. (2). 
Of course, Eq. (1), (2), and (3) can be rewritten in terms of r 1 and D(r 0. And 
finally to conclude this section we note that, because Pekeris et al. 1-12] have 
reported accurate expectation values ofr~ and r~2 for the He isoelectronic sequence, 
up to Z = 10, the summation in Eq. (3) will be taken only over the 9 two-electron 
atoms from He up to and including Ne § 8. The inclusion of more highly charged 
ions will have only a relatively small effect on the calculated values of 6 and will 
not alter the principal observations of this paper. 

3. Scaling in the Ground State of the He Isoelectronic Sequence 

The most accurate expectation values available for the ground state of two- 
electron atoms are those reported by Pekeris [14-16] for H-,  He and Li § Ex- 
pectation values of comparable accuracy have not been reported for the more 
highly charged positive ions. However, Scherr and Knight have reported an 
approximate sixth-order perturbation wave function for the ground state of 
two electrons about a nucleus of charge Z and used their wave function to com- 
pute perturbation expectation expansion coefficients for many operators through 
to sixth order [17]. Expectation values computed from the expansion coefficients 
of Scherr and Knight are compared with the accurate variational results of 
Pekeris in Table 1. It is clear that the sixth-order expectation values become 

Table 1. Expectation values for ground state of He isoelectronic sequence a 

Operator  H -  He LI + 
Pekeris b Scherr and Pekeris a Scherr and Pekeris ~ Scherr and 

Knight  ~ Knight  Knight  

r 1 2.170178 2.543604 0.929472 0.929290 0.572774 0.572768 
r~ 11.913692 9.506842 1.193483 1.192343 0.446279 0.446255 
~2 4.412694 4.097613 1.422070 1.421730 0.862315 0.862305 
r~2 25.202010 20.434759 2.516439 2.514189 0.927065 0.927018 

a In atomic units. 
b Ref. [14]. 

Calculated from the data  given in Ref. [17]. 
a Ref. [15]. 
e Ref. [16]. 
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much better as the atomic number increases. As Chong and Weinhold [18] 
have noted the discrepancy for Li + is about I part in 10 5 for (r l) ,  and (r12) and 
about 5 parts in l0 s for ( r f )  and (r~2). The perturbation values should be more 
accurate for the more highly charged ions and, therefore, for the purpose of 
determining the values of 6 which are appropriate for the ground state we shall 
use the Pekeris expectation values for He and Li + and the Scherr and Knight 
values for Be +2 through to Ne + 8. 

The results of the scaling of theground state expectation values by the pro- 
cedure described in the preceding section are shown in Table 2 for rl, r~ z, rl 2 and r~2. 
The near constancy of the scaled expectation values for each operator is indicated 
in the accuracy column which is calculated by expressing Sa as a percentage of 
the average of the scaled expectation values. Thus it can be seen that for each 
operator there exists a 6 which makes Eq. (2) or an equivalent expression nearly 
constant. It will be convenient to defer a discussion of the significance of the 6 
values for the ground state to a later section so that the ground and excited states 
may be discussed collectively. 

The Scherr and Knight sixth-order perturbation expansions can be applied 
to ions whose atomic number is greater than 10. In fact, the limiting value of fi 
for high Z can be evaluated directly from the expansion coefficients. If an operator q 
is expressed as a perturbation expansion in 1/Z to sixth order, then it follows 
from Eq. (2) that the scaled expectation values of q" are given by 

~]n [ CO Cl C6 ] (q'.) (z " [ Z "  + ~-~ i -  + . . .  +-~-ff~-g- .j (4) 

As discussed above, the scaled expectation values (q'") should be nearly constant 
for all Z if the distribution functions can be nearly superimposed and, therefore, 
we set the partial derivative of the right hand side of Eq. (4) with respect to Z 
equal to zero. From the resulting expression, it follows that as Z ~  oe 

C 1 

Substitution of the Scherr and Knight perturbation expansion coefficients 
into Eq. (7) yields the limiting values of 6 listed in Table 2. This approach can be 

Table 2. Scaling parameters for ground state of He isoelectronic sequence 

Operator 6" Accuracy b Limiting value ~ 

r I 0.39 0.2 0.375 
r~ 0.42 0.4 0.398 
r~ 2 0.46 0.1 0.471 
r~2 0.46 0.3 0.462 

a Evaluated from expectation values of Pekeris (He and Li +) and Scherr and Knight (Be +2 through 
to Ne + 8). 

b Calculated by expressing S~ as a percentage of the average of the scaled expectation values. 
Limiting value of 6 at high Z as calculated from the Scherr and Knight expansion coefficients. 
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used to d e m o n s t r a t e  tha t  the value  of fi varies  only  slowly as the power  n increases 
(fi equals  0.418, 0.434 and  0.448 for r~, r 4, and  r~ respectively). 

4. Scaling in Some Excited States of the He Isoelectronic Sequence 

Scaling p a r a m e t e r s  based  on the d a t a  of Peker is  et al. [-12] and  op t imized  
by  the cr i te r ion  defined in Eq. (3) are  l isted in Tab le  3 for sixteen exci ted states. 
The  accuracy  of the scal ing (see Tab le  2) is aga in  of  the o rde r  of one per  cent or  
less. 

Table 3. Scaling parameters for excited states of He isoelectronic sequence a 

State Operator 

gl r12 r~ r~2 

23S 0.54 0.60 0.61 0.61 
33S 0.73 0.77 0.77 0.77 
4aS 0.81 0.84 0.84 0.84 
53S 0,86 0,87 0,88 0,88 

21S 0.74 0,83 0.82 0.82 
3tS 0.85 0,90 0.89 0.90 
41S 0.90 0.93 0.93 0.93 
51S 0.93 0.94 0.94 0.94 

231~ 0.80 0.88 0.90 0.89 
33p 0.90 0.95 0.95 0.95 
43P 0.94 0.97 0.97 0.97 
53p 0,96 0.98 0.97 0.98 

2 ~P 0.89 0.99 0.97 0.99 
31p 0.95 1.00 1.00 1.00 
41P 0.98 1.00 1.00 1.00 
51p 0.99 1.00 1.00 1.00 

Evaluated from the expectation values of Ref. [12]. 
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Fig. 1. The f (q 2) distribution function for the 2 3S state of He and Mg + t o ~ = 0.6 and r~ 2 in atomic units 
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For all the cases considered in this paper, it should be stressed that the scaling 
is not exact in the sense that Eq. (2) and similar equations for the other operators 
are not identically equal to a constant. If the scaling were exact, S~ would be 
equal to zero. Although the ratio of S~ to the average of the scaled mean values 
provides a quantitative measure of the accuracy of the scaling, it is interesting 
to consider the graphical representation in Fig. 1 of the superimposition of 
f(r12) in the 23S state of He and Mg +1~ The correlated wave functions of Hart 
and Herzberg [19] used for this plot provide a good approximation to the exact 
distributions: 0.66060 and 0.50154 a.u. for (ra 2) and (r22) respectively for Ne + s 
compared with the exact [12] values of 0.66061 and 0.50155a.u. respectively. 
The scaled curves for Li +, Be + 2, B + 3, O + 6 and Ne + s lie between the He  and 
Mg +~~ curves shown in Fig. 1 and, therefore, we conclude that the scaling leads 
to a good superimposition off(rx2 ). 

5.Discussion 

From the data listed in Tables 2 and 3, it can be seen that there is an excellent 
agreement between the 6's derived from rl 2 mean values and those derived from 
rf2 mean values. This indicates that the f(r12) curves for all the states studied in 
this paper can be superimposed quite well by the scaling procedure discussed 
above. Also we note that there is a fairly good correlation between the 6's based 
on rf mean values and those based on r~2 mean values and that the correlation 
improves as we proceed to more highly excited states. This implies that the D(rl) 
distributions can be effectively superimposed by the same procedure as the 
f(rt2) distributions and, therefore, we might expect that an interpretation at- 
tached to 6 in the case of D(rl) should also hold for f(ra2). 

In view of the above observations, it would appear to be reasonable to interpret 
as a screening constant, or at least as a measure of the screening, associated 

with the screening by one electron of the nuclear charge experienced by the 
second electron. With this interpretation, we may note that on the basis of the 
results presented in Table 3: 

a) screening is greater in the singlet state than the triplet state of a particular 
configuration of two-electron atoms, 

b) screening is greater in the P states than the corresponding S states of two- 
electron atoms, and 

c) the screening approaches the limiting value of 1 (for two-electron atoms) 
for highly excited states. 

The first observation is consistent with the relative magnitudes of the electron- 
electron repulsion terms and the electron-nuclear attraction terms in the 2~S 
and 2aS states and the 21P and 23P states of He. Thus contrary to the common 
interpretation of Hund's rule, electron repulsion is greater in the triplet state 
than the singlet state of the ls2s [7] and ls2p [9] configurations of He. But 
because the triplet state is lower in energy, the virial theorem requires the electron- 
nuclear attraction to be larger for the triplet than for the singlet state. This is 
consistent with the observation that the screening is greater in the singlet than the 
triplet state of a particular configuration. 
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At this point, it is convenient to discuss the scaling parameters determined 
from the distribution functions f(rl2 ) and D(rl) in connection with the scale 
factors associated with what L6wdin [20] has called the scaling problem in 
quantum mechanics. The scale factor is defined by subjecting a trial wave function 
to a scale transformation, in which all the coordinate vectors of the trial function 
from a given origin are uniformly stretched by a certain scale factor t/in order to 
get a better fit of the trial function to the domain of space occupied by the system 
under consideration [20]. From this statement it is difficult to determine whether 
or not the scaling parameter ~ and the scale factor q are related. However, by 
consideration of some results obtained by the application of perturbation theory 
to the ground state of two-electron atoms, it can be shown that q and 6 are related 
in a certain sense. 

The scale factor can be written as 

q - = Z +  al 
2a ~ (6) 

where a0 and a~ are coefficients in the expansion for the energy [20] 

E = ao Z2 + al Z + a2 + a3/Z + . . . .  (7) 

In the limit when Z ~  o% the "effective nuclear charge" equals the scale factor 
and (-al/2ao) is interpreted as the charge by which each electron is screened 
by the other electron [20]. For the ground state of the He isoelectronic sequence, 
a 0 = - l, ai = ~- and, therefore, the screening is 0.3125. The second term of Eq. (6) 
is quite similar to the limiting value of 6 defined in Eq. (5) and, in fact, the limiting 
value of 6 obtained from the Scherr and Knight [17] expansion coefficients for 
(ri- 1 > is also 0.3125. Thus we see that there is a link between the screening derived 
from the scale factor and the screening interpretation attached to the scaling 
parameter. 

The value of 6 which corresponds to the screening derived from the scale 
factor is somewhat smaller than the results listed in Table 2. This difference 
can be attributed to the superimposing of different regions of the distribution 
functions. Thus the scaling of the mean values of the inverse powers of the operators 
r 1 and rl 2 is strongly affected by the corresponding distribution functions at small 
distances. This applies in the case of r~-1, whereas for positive powers, the scaling 
is governed to a greater extent by the distribution functions at larger distances. 
Of course, the scaling parameter would be independent of the power of the operator 
if the scaling were exact. Also it should be noted that the superimposition illus- 
trated in Fig. 1 is not destroyed by small variations in 6 and that the observations 
listed above would not be altered significantly if negative powers of rl and r12 
were used. It is important, however, to use similar sets of data to compare the 
scaling of different states. 

To conclude this paper, let us briefly consider the scaling of the Coulomb 
hole. The scaling procedure described in the second section of this paper preserves 
the normalization of a distribution function such as f(r~ 2). In contrast, the charge 
moved by the Coulomb hole is not necessarily constant for a particular state of an 
isoelectronic sequence and, therefore, a different scaling procedure is required for 



86 R.J. Boyd 

the Coulomb hole. Thus, Curl and Coulson [-3] have observed that the Coulomb 
hole in the ground state of the helium isoelectronic sequence, with the exception 
of H-,  can be represented by a single curve by plotting A (r12), the function 
which describes the Coulomb hole [-1], in terms of ( Z -  0.38)r12. In this case the 
abscissa is scaled but the ordinate is not. A recent study [21] of the Coulomb 
hole in the 2 3S state as a function of the nuclear charge indicates that the scaling 
observed by Curl and Coulson is not general for two-electron atoms. With the 
exception of He, the product of the atomic number and the radius [1] of the 
Coulomb hole in the 23S state appears to be nearly constant. Also the minimum 
value of A (r12), or depth of the Coulomb hole, is not independent of Z and there- 
fore, it is clear that the procedure which superimposes the Coulomb holes in the 
11S state does not lead to a similar result for the 23S state. There is, however, one 
remarkable similarity between the Coulomb holes of the ground and first excited 
states of the helium isoelectronic sequence. Thus, the Coulomb hole of the lowest 
member of the helium isoelectronic sequence for both the ground state [-3] and 
the first excited state [2t] appears to differ significantly from the Coulomb 
holes of the other members of the isoelectronic sequence. 
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